skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Frontiers"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The role of cloud feedbacks in Arctic amplification (AA) of anthropogenic warming remains unclear. Traditional feedback analysis diagnoses the net cloud feedback as strongly positive in the tropics but either weak or negative in the Arctic, suggesting that AA would be amplified if cloud feedbacks were suppressed. However, in cloud-locking experiments using the slab ocean version of the Energy Exascale Earth System Model (E3SM), we find that suppressing cloud feedbacks results in a substantial decrease in AA under greenhouse gas forcing. We show that the increase in AA from cloud feedbacks arises from two main mechanisms: 1) the additional energy contributed by positive cloud feedbacks in the tropics leads to increased poleward moist atmospheric heat transport (AHT) which then amplifies Arctic warming; and 2) the additional Arctic warming is amplified by positive noncloud feedbacks in the region, together making extrapolar cloud feedbacks amplify AA. We also find that cloud changes can modify the strength of noncloud feedback, but that modification has a small effect on Arctic warming. We further examine the role of cloud feedbacks in AA using a moist energy balance model, which demonstrates that interactions of cloud feedbacks with moist AHT and other positive feedbacks dominate the influence of clouds on the pattern of surface warming. However, the contribution of cloud-induced changes in noncloud feedbacks on AA is relatively minor. These results demonstrate that traditional attributions of AA, that are based on local feedback analysis, overlook key interactions between extrapolar cloud changes, poleward AHT, and noncloud feedbacks in the Arctic. 
    more » « less
    Free, publicly-accessible full text available August 15, 2026
  2. Abstract The prebiotic formation of RNA building blocks is well‐supported experimentally, yet the emergence of sequence‐ and structure‐specific RNA oligomers is generally attributed to biological selection via Darwinian evolution rather than prebiotic chemical selectivity. In this study, we used deep sequencing to investigate the partitioning of randomized RNA overhangs into ligated products by either splinted ligation or loop‐closing ligation. Comprehensive sequence‐reactivity profiles revealed that loop‐closing ligation preferentially yields hairpin structures with loop sequences UNNG, CNNG, and GNNA (where N represents A, C, G, or U) under competing conditions. In contrast, splinted ligation products tended to be GC rich. Notably, the overhang sequences that preferentially partition to loop‐closing ligation significantly overlap with the most common biological tetraloops, whereas the overhangs favoring splinted ligation exhibit an inverse correlation with biological tetraloops. Applying these sequence rules enables the high‐efficiency assembly of functional ribozymes from short RNAs without template inhibition. Our findings suggest that the RNA tetraloop structures that are common in biology may have been predisposed and prevalent in the prebiotic pool of RNAs, prior to the advent of Darwinian evolution. We suggest that the one‐step prebiotic chemical process of loop‐closing ligation could have favored the emergence of the first RNA functions. 
    more » « less
  3. Abstract Janus porous biomaterials are gaining increasing attention and there are considerable efforts to develop simple, rapid, and scalable methods capable of tuning micro‐ and macro‐structures. Here, a single‐step electro‐fabrication method to create a Janus porous film by the electrodeposition of the amino‐polysaccharide chitosan is reported. Specifically, a Janus structure emerges spontaneously when electrodeposition is performed at sub‐ambient temperature (0–5 °C). Sub‐ambient temperature electrodeposition experiments show that: a Janus microstructure emerges (potentially as the result of a subtle alteration of the intermolecular interactions responsible for self‐assembly); important microstructural features (pore size, porosity, and thicknesses) can be tuned by conditions; and this method is readily scalable (vs serial printing) and can yield complex tubular structures with Janus faces. In vitro studies demonstrate anisotropic cell guidance, and in vivo studies using a rat calvarial defect model further confirm the beneficial features of such Janus porous film for guided bone regeneration. In summary, these results further demonstrate that electro‐fabrication provides a simple and scalable platform technology for the controlled functional structures of soft matter for applications in regenerative medicine. 
    more » « less
  4. Abstract Herein, we leverage the Ni‐catalyzed enantioselective reductive dicarbofunctionalization of internal alkenes with alkyl iodides to enable the synthesis of chiral pyrrolidinones bearing vicinal stereogenic centers. The application of newly developed1‐NapQuinim is critical for formation of two contiguous stereocenters in high yield, enantioselectivity, and diastereoselectivity. This catalytic system also improves both the yield and enantioselectivity in the synthesis of α,α‐dialkylated γ‐lactams. Computational studies reveal that the enantiodetermining step proceeds with a carbamoyl‐NiIintermediate that is reduced by the Mn reductant prior to intramolecular migratory insertion. The presence of thet‐butyl group of the Quinim ligand leads to an unfavorable distortion of the substrate in the TS that leads to the minor enantiomer. Calculations also support an improvement in enantioselectivity with1‐NapQuinim compared top‐tolQuinim. 
    more » « less
  5. Abstract Chloroaluminate ionic liquids are commonly used electrolytes in rechargeable aluminum batteries due to their ability to reversibly electrodeposit aluminum at room temperature. Progress in aluminum batteries is currently hindered by the limited electrochemical stability, corrosivity, and moisture sensitivity of these ionic liquids. Here, a solid polymer electrolyte based on 1‐ethyl‐3‐methylimidazolium chloride‐aluminum chloride, polyethylene oxide, and fumed silica is developed, exhibiting increased electrochemical stability over the ionic liquid while maintaining a high ionic conductivity of ≈13 mS cm−1. In aluminum–graphite cells, the solid polymer electrolytes enable charging to 2.8 V, achieving a maximum specific capacity of 194 mA h g−1at 66 mA g−1. Long‐term cycling at 2.7 V showed a reversible capacity of 123 mA h g−1at 360 mA g−1and 98.4% coulombic efficiency after 1000 cycles. Solid‐state nuclear magnetic resonance spectroscopy measurements reveal the formation of five‐coordinate aluminum species that crosslink the polymer network to enable a high ionic liquid loading in the solid electrolyte. This study provides new insights into the molecular‐level design and understanding of polymer electrolytes for high‐capacity aluminum batteries with extended potential limits. 
    more » « less
  6. Abstract The repeated evolution of phenotypes provides clear evidence for the role of natural selection in driving evolutionary change. However, the evolutionary origin of repeated phenotypes can be difficult to disentangle as it can arise from a combination of factors such as gene flow, shared ancestral polymorphisms or mutation. Here, we investigate the presence of these evolutionary processes in the Hawaiian spiny‐legTetragnathaadaptive radiation, which includes four microhabitat‐specialists or ecomorphs, with different body pigmentation and size (Green, Large Brown, Maroon, and Small Brown). We investigated the evolutionary history of this radiation using 76 newly generated low‐coverage, whole‐genome resequenced samples, along with phylogenetic and population genomic tools. Considering the Green ecomorph as the ancestral state, our results suggest that the Green ecomorph likely re‐evolved once, the Large Brown and Maroon ecomorphs evolved twice and the Small Brown evolved three times. We found that the evolution of the Maroon and Small Brown ecomorphs likely involved ancestral hybridization events, while the Green and Large Brown ecomorphs likely evolved through novel mutations, despite a high rate of incomplete lineage sorting in the dataset. Our findings demonstrate that the repeated evolution of ecomorphs in the Hawaiian spiny‐legTetragnathais influenced by multiple evolutionary processes. 
    more » « less
  7. Abstract Terrestrial groundwater travels through subterranean estuaries before reaching the sea. Groundwater‐derived nutrients drive coastal water quality, primary production, and eutrophication. We determined how dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved organic nitrogen (DON) are transformed within subterranean estuaries and estimated submarine groundwater discharge (SGD) nutrient loads compiling > 10,000 groundwater samples from 216 sites worldwide. Nutrients exhibited complex, nonconservative behavior in subterranean estuaries. Fresh groundwater DIN and DIP are usually produced, and DON is consumed during transport. Median total SGD (saline and fresh) fluxes globally were 5.4, 2.6, and 0.18 Tmol yr−1for DIN, DON, and DIP, respectively. Despite large natural variability, total SGD fluxes likely exceed global riverine nutrient export. Fresh SGD is a small source of new nutrients, but saline SGD is an important source of mostly recycled nutrients. Nutrients exported via SGD via subterranean estuaries are critical to coastal biogeochemistry and a significant nutrient source to the oceans. 
    more » « less
  8. Abstract A long‐standing pursuit in materials science is to identify suitable magnetic semiconductors for integrated information storage, processing, and transfer. Van der Waals magnets have brought forth new material candidates for this purpose. Recently, sharp exciton resonances in antiferromagnet NiPS3have been reported to correlate with magnetic order, that is, the exciton photoluminescence intensity diminishes above the Néel temperature. Here, it is found that the polarization of maximal exciton emission rotates locally, revealing three possible spin chain directions. This discovery establishes a new understanding of the antiferromagnet order hidden in previous neutron scattering and optical experiments. Furthermore, defect‐bound states are suggested as an alternative exciton formation mechanism that has yet to be explored in NiPS3. The supporting evidence includes chemical analysis, excitation power, and thickness dependent photoluminescence and first‐principles calculations. This mechanism for exciton formation is also consistent with the presence of strong phonon side bands. This study shows that anisotropic exciton photoluminescence can be used to read out local spin chain directions in antiferromagnets and realize multi‐functional devices via spin‐photon transduction. 
    more » « less
  9. Abstract The ability to exhibit life‐like oscillatory motion fueled by light represents a new capability for stimuli‐responsive materials. Although this capability has been demonstrated in soft materials like polymers, it has never been observed in molecular crystals, which are not generally regarded as dynamic objects. In this work, it is shown that molecular crystalline microwires composed of (Z)‐2‐(3‐(anthracen‐9‐yl)allylidene)malononitrile ((Z)‐DVAM) can be continuously actuated when exposed to a combination of ultraviolet and visible light. The photo‐induced motion mimics the oscillatory behavior of biological flagella and enables propagation of microwires across a surface and through liquids, with translational speeds up to 7 μm s−1. This is the first example of molecular crystals that show complex oscillatory behavior under continuous irradiation. A model that relates the rotation of the transition dipole moment between reversible E→Z photoisomerization to the microscopic torque can qualitatively reproduce how the rotational frequency depends on light intensity and polarization. 
    more » « less